Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Med ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1403624

RESUMO

The recent epidemic outbreak of a novel human coronavirus called SARS-CoV-2 causing the respiratory tract disease COVID-19 has reached worldwide resonance and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. In this paper, we set out to shed light on the SARS-CoV-2/host receptor recognition, a crucial factor for successful virus infection. Based on the current knowledge of the interactome between SARS-CoV-2 and host cell proteins, we performed Master Regulator Analysis to detect which parts of the human interactome are most affected by the infection. We detected, amongst others, affected apoptotic and mitochondrial mechanisms, and a downregulation of the ACE2 protein receptor, notions that can be used to develop specific therapies against this new virus.

2.
J Med Virol ; 93(9): 5638-5643, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1363682

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged, posing a renewed threat to coronavirus disease 2019 containment and to vaccine and drug efficacy. In this study, we analyzed more than 1,000,000 SARS-CoV-2 genomic sequences deposited up to April 27, 2021, on the GISAID public repository, and identified a novel T478K mutation located on the SARS-CoV-2 Spike protein. The mutation is structurally located in the region of interaction with human receptor ACE2 and was detected in 11,435 distinct cases. We show that T478K has appeared and risen in frequency since January 2021, predominantly in Mexico and the United States, but we could also detect it in several European countries.


Assuntos
COVID-19/virologia , Genoma Viral , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Europa (Continente) , Humanos , México , Mutação , Filogenia , Glicoproteína da Espícula de Coronavírus/genética , Estados Unidos
3.
Brief Bioinform ; 22(2): 690-700, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1352110

RESUMO

The current outbreak of COVID-19 has generated an unprecedented scientific response worldwide, with the generation of vast amounts of publicly available epidemiological, biological and clinical data. Bioinformatics scientists have quickly produced online methods to provide non-computational users with the opportunity of analyzing such data. In this review, we report the results of this effort, by cataloguing the currently most popular web tools for COVID-19 research and analysis. Our focus was driven on tools drawing data from the fields of epidemiology, genomics, interactomics and pharmacology, in order to provide a meaningful depiction of the current state of the art of COVID-19 online resources.


Assuntos
COVID-19/prevenção & controle , Pandemias , COVID-19/virologia , Biologia Computacional , Humanos , Internet , SARS-CoV-2/isolamento & purificação
4.
Comput Struct Biotechnol J ; 19: 4092-4100, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1306919

RESUMO

Motivation: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease, 2019; COVID-19) is associated with adverse outcomes in patients. It has been observed that lethality seems to be related to the age of patients. While ageing has been extensively demonstrated to be accompanied by some modifications at the gene expression level, a possible link with COVID-19 manifestation still need to be investigated at the molecular level. Objectives: This study aims to shed out light on a possible link between the increased COVID-19 lethality and the molecular changes that occur in elderly people. Methods: We considered public datasets of ageing-related genes and their expression at the tissue level. We selected human proteins interacting with viral ones that are known to be related to the ageing process. Finally, we investigated changes in the expression level of coding genes at the tissue, gender and age level. Results: We observed a significant intersection between some SARS-CoV-2 interactors and ageing-related genes, suggesting that those genes are particularly affected by COVID-19 infection. Our analysis evidenced that virus infection particularly involves ageing molecular mechanisms centred around proteins EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4. We found that HMGA1 and NPM1 have different expressions in the lung of males, while HMGA1, APEX1, CHEK1, EEF2, and NPM1 present changes in expression in males due to ageing effects. Conclusion: Our study generated a mechanistic framework to clarify the correlation between COVID-19 incidence in elderly patients and molecular mechanisms of ageing. We also provide testable hypotheses for future investigation and pharmacological solutions tailored to specific age ranges.

5.
J Biomol Struct Dyn ; 40(14): 6545-6555, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1083230

RESUMO

SARS-CoV-2 entry in human cells is mediated by the interaction between the viral Spike protein and the human ACE2 receptor. This mechanism evolved from the ancestor bat coronavirus and is currently one of the main targets for antiviral strategies. However, there currently exist several Spike protein variants in the SARS-CoV-2 population as the result of mutations, and it is unclear if these variants may exert a specific effect on the affinity with ACE2 which, in turn, is also characterized by multiple alleles in the human population. In the current study, the GBPM analysis, originally developed for highlighting host-guest interaction features, has been applied to define the key amino acids responsible for the Spike/ACE2 molecular recognition, using four different crystallographic structures. Then, we intersected these structural results with the current mutational status, based on more than 295,000 sequenced cases, in the SARS-CoV-2 population. We identified several Spike mutations interacting with ACE2 and mutated in at least 20 distinct patients: S477N, N439K, N501Y, Y453F, E484K, K417N, S477I and G476S. Among these, mutation N501Y in particular is one of the events characterizing SARS-CoV-2 lineage B.1.1.7, which has recently risen in frequency in Europe. We also identified five ACE2 rare variants that may affect interaction with Spike and susceptibility to infection: S19P, E37K, M82I, E329G and G352V.Communicated by Ramaswamy H. Sarma.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virologia , Humanos , Mutação , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Med Virol ; 93(5): 3238-3245, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-932449

RESUMO

The avalanche of genomic data generated from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus requires the development of tools to detect and monitor its mutations across the world. Here, we present a webtool, coronapp, dedicated to easily processing user-provided SARS-CoV-2 genomic sequences and visualizing the current worldwide status of SARS-CoV-2 mutations. The webtool allows users to highlight mutations and categorize them by frequency, country, genomic location and effect on protein sequences, and to monitor their presence in the population over time. The tool is available at http://giorgilab.unibo.it/coronannotator/ for the annotation of user-provided sequences. The full code is freely shared at https://github.com/federicogiorgi/giorgilab/tree/master/coronannotator.


Assuntos
Genoma Viral , Mutação , SARS-CoV-2/genética , Sequência de Aminoácidos , COVID-19/virologia , Genômica , Humanos
7.
Front Microbiol ; 11: 1800, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-706306

RESUMO

The novel respiratory disease COVID-19 has reached the status of worldwide pandemic and large efforts are currently being undertaken in molecularly characterizing the virus causing it, SARS-CoV-2. The genomic variability of SARS-CoV-2 specimens scattered across the globe can underly geographically specific etiological effects. In the present study, we gather the 48,635 SARS-CoV-2 complete genomes currently available thanks to the collection endeavor of the GISAID consortium and thousands of contributing laboratories. We analyzed and annotated all SARS-CoV-2 mutations compared with the reference Wuhan genome NC_045512.2, observing an average of 7.23 mutations per sample. Our analysis shows the prevalence of single nucleotide transitions as the major mutational type across the world. There exist at least three clades characterized by geographic and genomic specificity. In particular, clade G, prevalent in Europe, carries a D614G mutation in the Spike protein, which is responsible for the initial interaction of the virus with the host human cell. Our analysis may facilitate custom-designed antiviral strategies based on the molecular specificities of SARS-CoV-2 in different patients and geographical locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA